Hi, there!
There is almost never a time when we are unaware of vehicles,
even if only subconsciously. Each time we report to work, we
encounter trains and automobiles on which corporate warriors
ride.
Then I ask myself, on behalf of mathematics geeks, at which
speed they usually walk and keep driving cars by maneuvering
their steering wheels.
Today, I give the differential calculation a shot to review its ba-
sic formula.
What is the speed that a vehicle is traveling according to the
equation \(d(t) = 5 – 6t^{2}\) at the eighth second of its journey?
In this instance, space is measured in meters and time in se-
cond.
Before immediately getting down to my solution, I want to re-
mind you of the definition of the derivative.
・Definition of derivative:\(f'(x)=\displaystyle\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\)
・Derivative:\(\frac{dy}{dx}=\displaystyle\lim_{\triangle x\rightarrow 0}\frac{\triangle y}{\triangle x}=\displaystyle\lim_{△x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\)
Once you have managed to remind the essence of the deriva-
tive, you probably do not need a detailed explanation about
how to estimate. Are you ready to answer?
OK! Here is my solution to the problem.
\(V^{t}_{8} = \displaystyle\lim_{h\rightarrow 0}\frac{5 – 6(8 + h)^{2} – (5 – 6・8^{2})}{h}\)
\(= \displaystyle\lim_{h\rightarrow 0}\frac{-96h – 6h^{2}}{h}\)
\(= \displaystyle\lim_{h\rightarrow 0}\frac{h(-96 – 6h)}{h}\)
\(= -96\frac{m}{s}\)
I am still too immature to have incredible wisdom, but studying
bit by bit, inch by inch, will make me much closer to the stage
that no one has reached, for sure.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)