Hi, there!
In a scoring hot summer in my first high school grade, I was talked into
daylighting by a friend of mine. It was good pay, but I had to work almost
one entire week under the direct sun.
As the day went by, I got more suntan, and my mother was flabbergasted
by my appearance as if I had become an athletically-inclined student.
“Good going, my son! You’ve got to go out instead of watching TV at home,”
my mother told me every time I got home.
As one of the memories of my high school days, I felt that I became an adult
through the construction work.
Getting the drift above, I want to challenge answering the word problem
related to daylighting. Here comes the question.
Frank Yoshida has kicked off daylighting as a construction worker. He is
dibbling a garden at a rate of \((300 – 6x)\) square feet per hour, where \(x\) is
the number of hours since he started dibbling. If the garden is 900 square
feet, how long will it take him to finish the garden? Round your answer to
the nearest minute.
I want to find how many hours \(H\) it takes Frank to dibble 900 square feet.
In \(H\) hours Frank can dibble
\(\int_{0}^{H}(300 – 6x)dx\) square feet, so I want to find \(H\) such that
\(\int_{0}^{H}(300 – 6x)dx = 900\).
\(900 = \int_{0}^{H}(300 – 6x)dx\)
\(= [300x – 3x^{2}]|^{H}_{0}\)
\(= [300H – 3H^{2}] – [300・0 – 3・(0)^{2}]\)
\(= 300H – 3H^{2}\)
Putting the formula in order, I get
\(3H^{2} – 300H + 900 = 0\)
and dividing through by 3,
\(H^{2} – 100H + 300 = 0\)
Let me use the quadratic formula to solve for \(H\):
\(ax^{2} + bx + c = 0\)
\(x = \frac{-b\pm\sqrt{b^{2} – 4ac}}{2a}\)
\(H^{2} – 100H + 300 = 0\)
\(H = \frac{100\pm\sqrt{(-100)^{2} – 4・1・300}}{2}\)
\(= 50\pm\frac{1}{2}\sqrt{10000 – 1200}\)
\(= 50\pm\frac{1}{2}\sqrt{8800}\)
The two answers are
\(50 + \frac{1}{2}\sqrt{8800}\approx 96.904\)
and
\(50 – \frac{1}{2}\sqrt{8800}\approx 3.096\)
Since 96 hours isn’t realistic amount of time to spend dibbling a garden,
and I keep the answer that’s approximately 3 hours. The amount 0.096
is approximately 0.096✕60 = 5.76 minutes, so rounding to the nearest
minute Frank spent about 3 hours and 6 minutes dibbling the garden.
Am I living a sunny life now?
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)