Hi, there!
The word problem today requires calculation abilities in that mathematics
develops into physics. Mathematics is already beyond my capacity; how-
ever, it is my disposition to be driven by an impulse to challenge a physics
word problem standing in my way.
An object is launched from ground level directly upward at \(39.2\,m/s\).
For how long is the object at or above \(58.8\) meters high?
First of all, let’s take a look at the following formula.
\(h = v_{0}t – \frac{1}{2}gt^{2}\)
\(h\) = height
\(v_{0}\) = initial velocity
\(g\) = acceleration of gravity
\(t\) = time
The object started at ground level; thus initial height was \(0\). Since the ac-
celeration of gravity is \(9.80665\,m/s^{2}\), the gravity number will be “\(4.9\)”.
The equation is:
\(h(t) = -4.9t^{2} + 39.2t\)
This is a negative quadratic, so the graph is an upside-down parabola.
We can find twice when the object is precisely \(58.8\) meters high. So let’s
solve the following:
\(–4.9t^{2} + 39.2t = 58.8\)
\(4.9t^{2} – 39.2t + 58.8 = 0\)
\(t^{2} – 8t + 12 = 0\)
\((t – 6)(t -2) =0\)
Then the object is at \(58.8\) meters two seconds after launch and six sec-
onds after launch coming back down. Subtracting to find the difference,
we find that the object is at or above \(58.8\) meters for four seconds.
As I get older, I seldom throw an object horizontally or vertically. I am a
bit apprehensive about the time I won’t be able to pick even an eraser in
my hand.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)