Hi, there!
What could be a mental lamp when you are in depression or in for a sleepless night? Don’t resort to the cheapest way, medication, because it isn’t the way to eradicate the root causes.
Internal problems should be grappled from the inside, or to put it more comprehensively, think of how you should put your mindset to be able to feel easy.
Think of what happiness is. In my light, happiness doesn’t lie in what you have but in how you think. In the same manner, when you are depressed or spending a sleepless night, don’t get into a negative spiral, but just go out of home for a nice breeze and have a mindfulness that you are gradually crawling up from the pits.
Don’t passively wait for your mental lamp to be given from the outside; let your mental lamp lurking deep inside vitalize to cast even a feeble light over your shadow.
Today, let me evaluate the volume of a lamp, not mentally but substantially.
The lamps near the front entrance of an athletic center have octagonal cross sections, where at height \(z\), the area is \(A(z) = 3(2 + \sqrt{2})(2 + z)^{2}\) with \(0 ≤ z ≤ 3\). What is the volume of the lamp? (Source: Harvard University Practice Exams [Slightly changed])
Here is my solution to the problem.
\(3(2 + \sqrt{2})\int_{0}^{3}(2 + z)^{2}dz\)
\(=3(2 + \sqrt{2})\int_{0}^{3}4 + 4z + z^{2}\,dz\)
\(=3(2 + \sqrt{2})[4z + 2z^{2} + \frac{z^{3}}{3}]_{0}^{3}\)
\(=3(2 + \sqrt{2})39\)
\(=117(2 + \sqrt{2})\)
Remarks:
1. octagon = a polygon of eight angles and eight sides
2. cross section = a flat plane cutting through a three-dimensional object,
usually at right angles to the longest axis of the object
You may check your mindfulness, but don’t “lamp” the computer screen too much; otherwise, your eyesight deteriorates.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)