Hi there!
“Off-shore trade” or “tripartite trade” has a nostalgic ring. I was shouldering the critical responsibilities of creating a new business at a trading company every year, and establishing the intermediary trade was one of my missions.
Those businesses include exporting plain paper copiers to India, electronic components to Singapore related to Surface Mount Technology (SMT), and musical instruments to South Africa, too numerous to comprehensively list here.
The day I received a big bounty is still fresh in my memory. I visited almost all acoustic guitar manufacturers in Taiwan and singled out high-quality but low-price makers in two weeks or so. I made all the effort worthwhile and exported dozens of containers to South Africa. Besides receiving such an incentive to enhance my morale, I was given a mission to attend a musical instrument show in Frankfurt, where I was allowed to slack off and hang loose during the fair.
To enlarge the tripartite trade was challenging and rewarding, but today let me try answering the equilateral triangle word problem to find how much larger the triangle has become.
An equilateral triangle of sides \(b\) cm makes its area \(\frac{\sqrt{3}}{4}b^{2}\). How much larger is the area of the larger equilateral triangle than the original one once each side of the latter has been extended by 4 cm?
Here is my solution to the problem.
\(\frac{\sqrt{3}}{4}(b + 4)^{2} – \frac{\sqrt{3}b^{2}}{4}\)
\(= \frac{\sqrt{3}(b^{2} + 8b + 16 – b^{2})}{4}\)
\(= \frac{\sqrt{3}(8b + 16)}{4}\)
\(= \frac{8\sqrt{3}(b + 2)}{4}\)
\(= 2\sqrt{3}b + 4\sqrt{3}\)
∴ The area difference between the two triangles is \((2\sqrt{3}b + 4\sqrt{3})cm^{2}\).
Do I have more areas for improvement?
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)