Hi there!
When I was an apprentice during the probational period at a trading company, I spent almost all my salary going out for a drink with my seniors and coworkers to socialize, except for thirty thousand yen for my parents.
I was a person who was instantly familiar with strangers, so in no time, I could hit it off with my company colleagues right away. That might be the reason why I kicked off my work as an overseas sales representative from scratch.
Our year-end party was always held in a Chinese restaurant that took up positions on the top floor of the building. Drinking Shaoxing rice wine all in one go was our annual event. That would cause a severe harassment problem now if that event had occurred in the Reiwa era in a company.
The alcohol percentage of Shaoxing rice is 14 to 18; however, we had sake such as 40 to 50 alcoholic strength then, which triggered our memory loss at the end of the party. We didn’t have the slightest idea to check the alcoholic content until we broke up the event.
Today, I am in a position to check the degrees of not alcohol but an angle, for I am sober now.
Represent \(\frac{3}{4}π\) in degree measure.
Here is my solution to the problem.
Given that the angle \(\theta\) (rad) is in radian measure and that \(x°\) is the angle in degree measure, 1rad becomes \(1rad = (\frac{180}{π})°\).
Then plug in \(\theta = \frac{3}{4}π\) for \(x° = \theta\,rad×(\frac{180}{π})\).
Thus, \(\frac{3}{4}π = \frac{3}{4}π×(\frac{180}{π})° = \frac{3}{4}×180° = 135°\)
Caution is advised. Don’t be overpowered by mathematics.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)