Hi there!
It’s been a long time since I was labeled “maverick.” You might ask me, “Don’t you feel lonely?” I haven’t wanted to be so, but my idiosyncrasy didn’t allow me to congregate with others.
I don’t know why, but I got along with the top cat of a student gang in my elementary and junior high school days. The group leader, particularly in junior high school, was groovy because he never tried to have a large following by saying:
――”Flocking in a group takes my coolness away.”
He reiterated the remark to his buddies.
My maverick spirit might have been fostered through my experiences as an expatriate or overseas sales representative. I still think a guy is groovy when he acts as a harbinger or stays aloof.
I’ve never been a follower of a group; however, today, grudgingly, let me look out to scrutinizing an inclusion relation in mathematics.
The whole real numbers are a universal set, given \(A =\){\(x|-1\leq x <5\)}
and \(C =\){\(x|k – 6 < x < k + 1\)} (\(k\) is a constant number). Find the range
of value \(k\) to make \(A\subset C\).
Here is my solution to the problem.
The conditions required to make \(A\subset C\) are:
\(k – 6 < -1\)・・・・・(Ⅰ)
\(5\leq k + 1\)・・・・・(Ⅱ)
The above (Ⅰ) and (Ⅱ) must stand, so
From (Ⅰ), \(k < 5\), and from (Ⅱ), \(4\leq k\).
Therefore, the range in common is \(4\leq k < 5\).
Solving the above inclusion relation problem hasn’t affected my disposition. I’m going to go on a solo motorcycle tour to keep aloof.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)