Hi there!
――If the outgoing words are beautiful, then the incoming words will be beautiful, too.
Still fresh in my memory that I quoted somewhere in my blog. I still never forget this quotation because it is simple, elegant, and impeccable.
In my early twenties, I visited Trinidad Tobago, an island country in the southeastern West Indies, before going to Curaçao in the southern Carrebian sea. If I remember correctly, it was at midnight past two to three o’clock when I was about to get my belongings inspected in the baggage claim of Piarco International Airport.
I had a lot of samples for sales promotions on overseas negotiations. The immigration staff lost no time fumbling inside my baggage, which made me nerve-wracked, and inadvertently, I used abusive language.
――What the hell are you doing!? Do you carry a grudge against the Japanese?
They were, first of all, calm; however, they changed their attitudes towards me after hearing the invective. They confiscated a few electronic device samples in my possession and talked me into calming down for smooth immigration.
I was immature. I should have talked to the staff gently and politely. If I had known the opening phrase then, I wouldn’t have been disgusted so much.
It was the second time I had gotten my samples confiscated on my overseas trip; I would say, loud and clear, nothing but a youthful indiscretion.
There are English words “factorize” and “garnish” in legal terms related to confiscation. I’m not a staffer of such authorities, but today, let me factorize not someone’s collateral for foreclosure but a quadratic formula in mathematics.
Factorize the quadratic formula \(x^{2} – 32x – y^{2} – 8y + 240\). (Ref: Enjoy Math to Become Mathy)
Here is my solution to the problem.
Apparently, it would be better to use a completing square.
\(x^{2} – 32x – y^{2} – 8y + 240\)
\(= \displaystyle\left\{(x – 16)^{2} – 256\right\} – \displaystyle\left\{(y + 4)^{2} – 16 – 240\right\}\)
\(= (x – 16)^{2} – (y + 4)^{2}\)
\(= (x + y – 12)(x – y – 20)\)
That’s one small step for a blogger, one giant leap for humanities-major persons.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)