Hi there!
――Examine the content, not the bottle.
That’s what I’ve repeatedly been underscoring for scrutinizing your counterparts in business. You shouldn’t judge a book by its cover, you know.
Then, what about your appearance? Needless to say, it is important to look polished and professional; however, you shouldn’t be too much flashy or look like you’re desperate to attract attention.
I wore a turquoise-color double-breasted suit with a gold bracelet when conducting business consultancy for export business. I drove to my clients and vendors in a sports car, whose social snobbery was part of my job.
To coincide with the consultancy, I kicked off teaching English at a vocational and language school, and one of my fellow teachers was flabbergasted to see my flashy appearance as if I were a winkler or dodgy businessperson amid a bubble economy.
For unfathomable reasons, I was about to turn my eyes to another business when my clients’ businesses showed signs of nosediving in the industry before long.
I’m the kind of person who can smell a rat about what’ll happen a few years down the road. It was regrettable that my guess hit it right on the nose, and their business was downward-sloping.
Truth be told, on October 1, 2022, I’ll quit teaching at a language school where I worked as a part-time instructor. Let’s see what’ll happen to them a few years later.
Today, let me challenge myself to find a linear function whose line graph shows downward-sloping. Hopefully, that is not the sales turnover of that school in a few years.
Find a linear function that satisfies the condition: its domain \(1 < x\leq 3\) and range \(-3\leq y < 3\). (Ref: Yellow Chart Math Ⅰ+A P85, slightly changed the condition)
Here is my solution to the problem.
Since the codomain includes not \(x = 1\) and \(y = 3\) but \(x = 3\) and \(y = -3\), the graph shows part of a straight line passing the two coordinates \((3, -3)\) and \((1, 3)\).
Plug the \((3, -3)\) and \((1, 3)\) in the linear function \(y = ax + b\), and we get \(a = -3\) and \(b = 6\).
Therefore, the linear function obtained is \(y = -3x + 6\,(1 < x\leq 3)\).
What about my business on online lessons? It’ll see “the writing on the wall” or, luckily, show “a positively sloped curve”?
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)