Hi there!
In my Business English Class, I often give my students a mathematical word problem as an optional question, for the majority of them used to major Not in humanities But in Science in their university.
One time factorization, other time differentiation, and whatnot. Just studying English is boring, so giving them a mathematical word problem can be a good stimulant.
Today, let me review the constant integration of a trigonometric function whose word problem, I remember, would be elicited from one of the foreign blogs. If someone identified its source, I would be more than happy to mention it without delay.
Evaluate the following integral, if possible. If it is impossible, clearly explain why it is not possible to evaluate the integral.
\(\int_{0}^{\frac{π}{4}}\frac{8\cos(2t)}{\sqrt{9-5\sin(2t)}}dt\)
Here is my solution to the problem.
First of all, let’s do the substitution. The substitution for this problem is,
\(u = 9 – 5sin(2t)\)
Here is the actual substitution for this problem.
\(du = ―10cos(2t)dt\), so \(cos(2t)dt = -\frac{1}{10}du\)
\(t = 0:u = 9\)
\(t = \frac{π}{4}:u = 4\)
Now convert the limits to u’s to avoid dealing with the back substitution after doing the integral. Here is the integral after substitution.
\(\int_{0}^{\frac{π}{4}}\frac{8\cos(2t)}{\sqrt{9-5\sin(2t)}}dt\)
\(= -\frac{8}{10}\int_{9}^{4}u^{-\frac{1}{2}}du\)
The integral is then,
\(\int_{0}^{\frac{π}{4}}\frac{8\cos(2t)}{\sqrt{9-5\sin(2t)}}dt\)
\(= [-\frac{8}{5}u^{\frac{1}{2}}]_{9}^{4}\)
\(= – \frac{16}{5} – (-\frac{24}{5}) = \frac{8}{5}\)
That’s great! I’ve managed to review what I had studied before. Studying integration is becoming more and more intriguing.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)