Hi, there!
When I started feeling I got into an old rut at a trading company,
I thought it was high time I quit my job, not because of human
relations, but because of my strong desire to spend more time
doing a creative and giving an impact to society.
It was not until my fifth mission to be an expatriate in South Af-
rica that I submitted a resignation letter to the senior executive
director. He seemingly got shocked and asked me why. I didn’t
want to procrastinate my decision and couldn’t let this opportu-
nity slip by.
It was time for me to burn the bridges behind me.
As a businessman, I worked directly under the executive direc-
tor; he taught me a lot about business negotiations, presenta-
tions, and the dos and don’ts. I have made it this far, thanks to
his draconian mentoring.
While working with him, I had seldom been praised by him, but
on the last day I was about to leave the company, he spoke to
me with appreciation, “Without doubt, you are a great ‘Shousha-
man’ (businessman).”
Today, I’ll solve a word problem related to a bridge, recalling my
bygone turning point.
Between the two towers of a suspension bridge, each of the two
main cables has the shape of the parabola \(y = \frac{1}{5}x^{2}\) (units are
kilometers). The two towers are 2 km. apart; the vertical cables
from main cable to the horizontal roadway are closely and equal-
ly spaced. (A) Set up a definite integral which gives the length of
each main cable between the two towers. (B) What is the average
length to the nearest meter of the vertical cables? (Source: Mas-
sachusetts Institute of Technology, Final exams [Note] Slightly
changed its equation)
Here are my solutions to the problem.
(A) \(y = \frac{x^{2}}{5}, y’ = \frac{2}{5}x\)
Therefore, Arch length = \(\int_{-1}^{1}\sqrt{1 + \frac{4}{25}x^{2}}\)
(B) Average = \(\int_{0}^{1}\frac{x^{2}}{5}dx = [\frac{x^{3}}{15}]_{0}^{1} = \frac{1}{15}\)km \(≓ 67\) meters, or
\(\frac{1}{2}\int_{-1}^{1}\frac{x^{2}}{5}dx\)
\(= \frac{1}{2}[\frac{x^{3}}{15}]_{-1}^{1}\)
\(= \frac{1}{2}\displaystyle\left\{\frac{1}{15} – (-\frac{1}{15})\right\}\)
\(= \frac{1}{2}(\frac{1}{15} + \frac{1}{15})\)
\(= \frac{1}{2}(\frac{2}{15})\)
\(= \frac{1}{15}\)
\(≓ 67\) meters
Are you the person who crosses that bridge when you come to it?
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)