Hi, there!
In my EIKEN® Grade 1 class, I am determined to ask several questions to all
of my students in English and let them evaluate their performance and wheth-
er the talks are organized.
――Are there any areas for improvement in her talk?
Interestingly, in most if not all cases, they tend to hesitate to feedback mutu-
ally because they do not want to be offensive to others by giving a critique.
Japanese people are often considered “inscrutable” partly because they are
unwilling to be assertive.
Conversely, deep down inside, they are not happy to receive any comments
on their performance even though they ostensibly say they appreciate any
feedback. How unmanageable they are! Honestly, I feel more comfortable
talking with non-Japanese people than the Japanese.
I might have polished myself with ages; however, I still have a lot of areas
for improvement, so let me scrutinize today an “area” in a math word prob-
lem.
Determine the area of the region bounded by \(y = 3x^{2} + 4\) and \(y = -3x + 10\).
Here is my solution to the problem.
In this case I can get the intersection points by setting the two equations
equal.
\(3x^{2} + 4 = -3x + 10\)
\(3^{2} + 3x – 6 = 0\)
\(3(x + 2)(x – 1) = 0\)
They will intersect at \(x = -2\) and \(x = 1\).
With the graph I can now identify the upper and lower function and so I can
now find the enclosed area.

\(A = \int_{a}^{b}(_{function}^{upper}) – (_{function}^{lower})dx\)
\(= \int_{-2}^{1}-3x + 10 – (3x^{2} + 4)dx\)
\(= \int_{-2}^{1}-3x^{2} – 3x + 6\,dx\)
\(= [-x^{3} – \frac{3}{2}x^{2} + 6x]_{-2}^{1}\)
\(= \frac{27}{2}\)
If I miss a figure, I will have an area for improvement. If so, there will be a
long way to reach my being impeccable.
Stay tuned, and expect to see my next post.
Keep well.
Frank Yoshida
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【グローバルビジネスで役立つ数学】でもっと学習する b^^)
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社
【レッスン】私のオンライン英語レッスンをご希望の方はこちらをご覧ください。
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
違いについても一切の責任を負うものではありません。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]のランキングは――


![グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/meanvalue.jpg)

![グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/consumer.jpg)
![グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/efficiency.jpg)
![グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]](https://frankyoshida.com/experts-at-mathematics/wp-content/uploads/2025/11/integration.jpg)