積分法(24)面積と定積分の関係~曲線と直線で囲まれた面積~

こんにちは<Frank>です。

今日で121日目。今回は曲線と直線で囲まれた面積を求めてみます。

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
いつものように著作権の関係から、テキストもう一度高校数学
363ページの例題の数式を若干変えて問題を解くことにします。

\(x\) 軸と \(y = f(x)\) で囲まれる部分の面積 \(S\) を求めます。
曲線 \(y = 2x^{2} – 16x + 30\)

最初に \(x\) 軸と \(y = f(x)\) との交点の \(x\) 座標を知るため、
\(2x^{2} – 16x + 30 = 0\) を解きます。

\(2x^{2} – 16x + 30 = 0\)
\(x^{2} – 8x + 15 = 0\)
\((x – 3)(x – 5) = 0\)
∴ \(x = 3、5\)

また、求めたい部分の面積 \(S\) は、\(x\) 軸対称に折り返した部分の面積
と一致するので、

\(S = -\int^5_{3}2(x – 3)(x – 5)dx\)
 \(= -2\int^5_{3}(x^{2} – 8x + 15)dx\)
 \(= -2\displaystyle\left\{\frac{1}{3}[x^{3}]^5_{3} – 8・\frac{1}{2}[x^{2}]^5_{3} + 15[x]^5_{3}\right\}\)
 \(= -2\displaystyle\left\{\frac{1}{3}(125 – 27) – 4(25 – 9) + 15(5 – 3)\right\}\)
 \(= -2(\frac{1}{3}・98 – 64 + 30)\)
 \(= -2(\frac{98 – 192 + 90}{3})\)
 \(= -2(\frac{-4}{3})\)
 \(= \frac{8}{3}\)(答)

\(y = 2x^{2} – 16x + 30\) のグラフは下図になります。

私なりに計算も頑張ってみました。齢を重ねると集中力がもたない
ので大変でした。若い人には敵いませんね (^^)>

次回は<面積と定積分の関係>の続きで、放物線と直線で囲まれた
面積を求めてみます。どうぞお楽しみに b^^)

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
【高校数学(数ⅠA・数ⅡB・数ⅢC)を復習する】でもっと学習する b^^)
【コンテント】当サイトで提供する情報はその正確性と最新性の確保に努めていま
 すが完全さを保証するものではありません。当サイトの内容に関するいかなる間
 違いについても一切の責任を負うものではありません
【参考図書】『もう一度高校数学』(著者:高橋一雄氏)株式会社日本実業出版社

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
今日もご一読いただき、ありがとうございました。

大学受験の数学でお悩みなら、こちらの講座がお薦めです。
数学の添削指導も受けられます。早速講座をチェック!

尚、私の姉妹ブログ実践英語の達人では実践ビジネス英語や英検®
1級等の資格講座、また大学受験生に対する個別指導もオンライン
で行っています。良かったらご一読ください。

只今、人気ブログランキングに参加しています。
今日の[実践数学の達人]ブログのランキングは?

Frank

Frank

■兵庫県立神戸商科大学・商経学部経済学科卒。総合商社勤務後、国際ビジネスコンサルタントとして独立。北米・中南米・オセアニア・東南アジア・欧州・アフリカ諸国等での駐在、インターナショナル・マイクロエレクトロニクス・アンド・システムズ国際会議での講演、米国および台湾新竹縣シリコンバレーでの表面実装技術テクニカル・アドバイザー、米国直接投資に関わる国際訴訟問題解決のためのアイスブレーカー、レザービジネスでの貿易顧問、木材輸入業での商談等、数多くのグローバルビジネスの経験を積む。■ビジネスコンサルティングに従事する傍ら、国連英検(UNATE)特A級・ビジネス英検(BEST)A級・ボランティア通訳検定(V通検)A級・看護英語試験(TOPEC)満点・日商ビジネス英検1級・観光英検1級・全商英検1級・英単語検定(単検)1級・実用英語技能検定(英検®)1級・通訳案内業国家資格を含む英語資格十冠を達成。イーラーニング講座開講後、ズーム・スカイプレッスンとの相乗効果で英検®1級合格者72名、全国通訳案内士国家試験合格者47名、TOEIC®990満点取得者6名やその他英語資格取得者を多数輩出。■《英会話講師への登龍門》として定着した筆者開講の[実践英語の達人クラス]では、プロの英会話講師や大学教授・講師、塾講師も受講。20名以上の上級英会話講師を育成。■goodbook出版主催の《2008年度出版登龍門》にて短編ラブロマンス小説『離れられなくなっちゃう』がグランプリ(大賞)を受賞、2009年1月商業出版にてデビュー。2012年5月には同じく商業出版にて長編社会派ミステリー小説『謎のルージュ』を出版。現在ペーパー版・Kindle版を合わせ全14作をアマゾンにて好評発売中。■趣味はバイクツーリング。メガツアラーの[Suzuki/GSX-1300R Hayabusa]を駆り、全国の海岸線を周遊。孤高の旅を満喫する。

Related Posts

数とは何か?(1)実数~自然数・整数・分数・有限小数・循環小数~(Bilingual Edition)

こんにちは<Frank>です。 いや~長い間ご無沙汰していま…

数列と極限(6)等比数列の和

こんにちは<Frank>です。 今日で68日目。もう一度高校…

You Missed

【ご挨拶】初めての方へ/「グローバルビジネスで役立つ数学!」を連載中!

  • 投稿者 Frank
  • 11月 28, 2025
  • 754 views
【ご挨拶】初めての方へ/「グローバルビジネスで役立つ数学!」を連載中!

グローバルビジネスで役立つ数学!日本人数学者への喝采と「効用最大化」の思考法──ABC予想から学ぶ知の刺激(第6回)

  • 投稿者 Frank
  • 11月 28, 2025
  • 380 views
グローバルビジネスで役立つ数学!日本人数学者への喝采と「効用最大化」の思考法──ABC予想から学ぶ知の刺激(第6回)

グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]

  • 投稿者 Frank
  • 11月 20, 2025
  • 508 views
グローバルビジネスで役立つ数学!【平均14・モードなし】Aの最大値は?数学的思考で解くビジネスパーソン向けデータ問題の完全解説(第5回)[英対応]

グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]

  • 投稿者 Frank
  • 11月 19, 2025
  • 415 views
グローバルビジネスで役立つ数学!限界代替率(MRS)を直感で理解――高校数学で学ぶ消費者理論の実践問題(第4回)[英対応]

グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]

  • 投稿者 Frank
  • 11月 18, 2025
  • 345 views
グローバルビジネスで役立つ数学!【経済学入門】限界効用の計算方法を偏微分でマスター!消費者理論の基礎解説(第3回)[英対応]

グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]

  • 投稿者 Frank
  • 11月 17, 2025
  • 339 views
グローバルビジネスで役立つ数学!高校数学の不定積分を完全マスター――基本公式と計算例で理解力アップ(第2回)[英対応]